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Exact solution of a stochastic directed sandpile model
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We introduce and analytically solve a directed sandpile model with stochastic toppling rules. The model
clearly belongs to a different universality class from its counterpart with deterministic toppling rules, previ-
ously solved by Dhar and Ramaswamy. The critical exponent®are7/4, r=10/7 in two dimensions and
Dy =3/2, 7=4/3 in one dimension. The upper critical dimension of the model is three, at which the exponents
apart from logarithmic corrections reach their mean-field vags 2, 7=3/2.
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Numerical and analytical studies of sandpile models ofRamaswamy introduced and exactly solved in all dimensions
self-organized criticalit(SOQ [1] continue to be a subject its directed counterpart—the Dhar-Ramaswai@iR) model
of considerable research activity. In particular, much efforf 7].
has recently been invested in establishing the set of univer- Both BTW and DR models have deterministic toppling
sality classes in these systefit. The consensus seems to rules. As far as stochastic models are concerned there is pre-
be that the universality class of @dimensional sandpile ciously little analytical results. Apart from an exact solution
model depends on the following list of questions. of a model, equivalent to the 1D stochastic directed sandpile

(i) Is it a critical slope or a critical height model? In other [8], stochastic sandpiles were studied only numerically. In
words, does a site topple when its local slope or height exthis paper we present an analytical study of a stochastic di-
ceeds a certain threshold value. This concerns the drivingected sandpile model in all dimensions. Stochastic directed
mechanism of the model. Critical height modpésg., Bak-  sandpiles were brought to the attention of the community in
Tang-WiesenfeldBTW) model[1]] were studied more ex- two recent paperg9], reporting numerical studies of several
tensively in the past and are in general better understood. variants of such models in two dimensions. During the

(i) Is sand redistributed isotropically in a toppling event?preparation of this paper, there appeared a closely related
Accordingly, models can be classified as isotropic or directegoreprint by Paczuski and Bass[di0] in which an analytical
(anisotropi¢. The common knowledge is that this is a rel- study of the directed stochastic sandpile model was pre-
evant parameter, i.e., an arbitrary small anisotropy in topsented and similar results were obtained. In particular, using
pling rules usually drives the model to the directed univer-different analytical arguments they have arrived at the same
sality class. set of exponents.

(ii ) Finally, is sand redistributed deterministically or ran-  The microscopic rules of the stochastic directed sandpile
domly in each individual toppling3]. In a model with de- model that we selected to study are closely related to those of
terministic toppling rules the configuration of the sandpilethe DR mode[7]. These rules are modified in the spirit of a
remains unchanged if every single site on the lattice topplestochastic isotropic sandpile model known as the Manna
exactly once. This additional symmetry is usually importantmodel[11]. It is easier to define our rules in two dimensions,
for the universality class of the model. For example, the dewhile generalization to higher dimensions is straightforward.
terministic one-dimensional isotropic critical height model A stable configuration of our model is specified by the inte-
(1D BTW) has only trivially distributed avalanches of fractal ger height of the sandpilg(x,,x,)<1 at each point of a 2D
dimension 2. While the variants with randomness in topplingsquare lattice. The lattice has open boundary conditions
rules, such as the Zaitsev modé], Oslo model[5], linear ~ along the diagonal coordinateq=x;+X,, and periodic
interface model6], etc., seem to belong to a universality boundary conditions in the transversal directign= x; —X.
class where avalanches have a noninteger fractal dimensidrhe sand is added randomly at the line with=0 and falls
D=2.23 and a probability distribution with a power law ex- off the edge a =L . The difference between our model
ponentr=1.27. and the DR model lies in toppling rules. In both cases, once

Despite many careful numerical and analytical studies othe height at any given site exceeds one, this site becomes
the original BTW sandpile modélwhich is a deterministic unstable and loses two grains of sand to its nearest neighbors
isotropic critical-height model in the above classificalidts  in the direction of increasing . However, while in the DR
critical exponents in two dimensions still remain controver-model each of these two neighbors gets exactly one grain of
sial[2]. The situation is somewhat better for directed modelssand, in our stochastic variant the decision where to move
Soon after the original BTW sandpile modél], Dhar and any particular grain is done independently for each grain. In
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other words, with probability 1/4 both grains end up on theplingsN(x;) from layer to layer. On the other hand, any site
left neighbor, with probability 1/4 they go to the right neigh- which received an odd numbek2 1 of grains of sand from
bor, and only with probability 1/2 will each neighbor get one a previous layer has equal chance to togptenes (if it had
grain as in the DR model. Obviously, on average each neighe=0 before the transferor k+1 times(if it had z=1). In

bor gets one grain, yet the additional stochastic element ifhe former case this site would decrease the grain flow
the rules drives the model away from the universality clasN(X) by one, while in the latter, increase by 1. Let us call
of the DR model9]. It is easy to see that unlike the deter- @ny site which has received an odd number of grains from
ministic rules of the DR model, the new stochastic rulesthe previous layer aactive site The equation, which is the
allow for multiple topplings of some sites within one ava- central result of_this work, relating the change in the total
lanche. Indeed, let us consider an example where in the firgumber of topplings from layer to layer to the number of
toppling one grain of sand was transferred to each of tw&‘cz'vi f;'tfs'\'a(xl\) in a given layer isN(x)=N(x;—1)
sites in the next layer. Let us further assume that these sites 2 ac1 €a, Where all¢, are —1 or +1 with equal prob-
both toppled and by chance distributed all four of the resultaPility and independent of each other. These random num-
ing grains of sand to the same site in the next layer. This sitB€rs correspond to whether each of Hg(x|) active sites
has received four grains of sand and therefore would toppl82d the heighz=0 or z=1 before the avalanche started. It
twice. The numerical simulation®] confirm the existence 'S straightforward to demonstrate that, as in the DR model, in

of multiple topplings in other variants of a stochastic directedthe steady state .Of the directed stochastic model all possible
sandpile model stable configurations ofare equally represented, and, there-
In order to g.et an analytical handle on the properties 01fore, there are no correlations between the heights at differ-

our model we employ the same trick that was used by one o‘?m sites and each height is equally likely to hawe0 or z

us to solve a 1D directed stochastic sandpile mé8EiDue 1. It is more convenient to rewrite the above equation in a
to the Abelian[12] nature of the model, we can change thecontmuous notation:

order in which topplings are performed without changing the dN(x;))
outcome. It is convenient to do topplings layer by layer. This . I
means that we topple any given site as many times as nec- X

essary to make it stable before moving on to the next UNvhere 7(t) is a standard Gaussian variable with zero mean
stable site, and we topple all unstable sites in one léger

) . o and unit variance. This equation describes an unbiased ran-
givenx)) before to.pp'”?g any S'.te in the ne>§t Iayer_. Let us dom walkN(x||) with a variable step sizé\N (X)) A ran-
concentrate on a site with coordinatgsandx, immediately dom walk(an avalanchestarts withN(0)= 1 aand ends at
after we have finished with topplings in they (- 1)th layer. !

Assume that two of its neighbors with coordinatgs-1 and whenN(xH)_sO for th_e_ first time. Let us assume ”_N(XH)
. N andN,(x)) in a surviving avalanche scale witty with the
X, =1 have toppled, respectivelp; =n(x;—1x, —1) and

_ - . . exponentsa and «a,, respectively. It follows thatN,
nz=n(x;—1x, +1) imes. The average number of grains 0f~N“a’”‘. We use this relation to eliminate the variaig

sand _that our selected site would receive from the PreVIOUS om Eq.(1). The resulting differential equation can be easily
layer is (N, +n,). In the DR model there are no fluctuations solved to give the exponent relations

around this average. Also, due to the absence of multiplé
topplings in this deterministic directed model, andn, can 1+,
be only O or 1. Therefore, in the DR model a site can receive a= ,
. g S ) o 2
eithern;+n,=2 grains, in which case it is guaranteed to
topple exactly once, on;+n,=1, in which case it can \here =
topple with probability 1/2(i.e., it topples if it hadz=1
before the transfer and remains stable if it lza€0). From ) ) y i 1ta
this one can sho7] that in the DR model the set of sites (-6 the total number of topplingss=X/1,N(i)~Xx]
which topple at each layer form an interval with no holes~xﬁ”, we recover the well-known exponent relatian
inside. The size of this interval as a function of the layer=D), for general directed sandpile models.
numberx) performs an ordinary random walk. Note that Eq.(1) applies to the DR model as well as the
In the stochastic model the relation between the numbestochastic directed sandpile models. The difference between
of topplings in two subsequent layers is more complicatedthese two models lies only in the scaling of the number of
Let us focus on the behavior of the total number of topplingsactive sites withx|. As was explained above, in the 2D DR
N(x) ==, n(x,x.) in a given layerx. The number of model the only two active sites lie at the edge of the interval
grains of sand transferred from the lay@rto the next layer ~of toppled sites. Indeed, only these sites get 1 grain of sand,
is simply 2N(x)). It is easy to see that a site which has While the rest ge.t e_|ther 0 or 2. Therefore, in the 2D DR
received an even numbek 2f grains of sand from a previ- modelN,(x|)=2 is just a constantg,=0, and the Eq(1)
ous layer will always topple exactly times and, therefore, describes an ordinary random walk in whi®(x )~ X(f
will transfer the same R grains of sand to the layer directly =xﬁ’2. The introduction of a stochastic element in particle
below it. That means that as far Bi¢x|) is concerned, such redistribution dramatically changes the number of active
sites behave in a completely passive manner, i.e. they do nsttes at any given layer of the avalanche. Indeed, when grains
lead to a decrease or an increase of the total number of togre redistributed independently, any site which has at least

1
= 5VNa(X) 7(x), (1)

TH=1+ a, (2

| is the exponent of the avalanche length distribu-
tion, p(xH)~x|TT“. Since by definition the avalanche size
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onetoppled neighboiin the previous layer is equally likely AL A

to receive an even or odd number of grains, and therefore, it o8-

has a probability 1/2 of becoming active. Thus, in the sto- €

chastic model the exponeant, defines how the number of 2 06

distinct sitesthat topple at least once, scales with the layer §. L

numberx. The difference between exponenisand a, $ — — 0=0.75,0,=0.5

comes solely from the existence of multiple topplings. These = 0.4 + 0, L=5,000

two exponents have to obey the inequality «,, and their 8 85 o o, L,=100,000 1

difference « — a, determines how the average number of io 0.2 - P x @, , L=5,000 -

topplingsny,(x) at a given site in theth layer scales with e ° a,, 1,=100,000

XH: ntop"‘N/(ZNa)"“Xﬁ[—aa. 0.0 R R BT R R
We proceed with an argument that in the 2D directed 1 10 100 § 1000 10000 100000

stochastic modek,=1/2, and, therefore, from Eq2) «
=3/4. It is straightforward to determine tlaweragenumber
average 5 periofned over the whole enbemble of avalanchasd 99 N/4109% andas=dlog,/diog, a a uncion of fo
. - . e 2D model, and for two longitudinal system sizes=5000 and
so that avalanches that die out before reaching this site cop- _ ;55000
tribute O to the average. As was noted in R&f, due to the ! '
conservation of sand and the stationarity of the sandpile pro-
file, (n(x,x,)) has to satisfy the diffusion equation with a @=dlogN/dlogx; and a,=dlogN,/dlogx; as a function
source: of ). The numerical exponent agrees well with the ana-
lytical results. The exponent, is less clean due to the pres-
an(xx)) 1 ‘92<”(XH X)) ence of ho'les near the boundary of avalanche regions. The
I =5 > +8(x)d(x.).  (3)  exponent first overshoots to a value of almost 0.6 but then
I X clearly goes down so that in the end of the range of our

, . . simulations x;~ 100 000, it is consistent with our theoretical
Indeed,on averagethe configuration of the sandpile after an és:jltal :1’;(2H it : with ou :
a .

avalanche has to be that before the avalanche minus the ex{ra.l.O address the question of universality Dhar and Ra-

?Sr"’;g gvg;cahcx%? gg?i?ozﬁgnstggemsgﬁérev.v;:ree éiitbi?r\: eliigliag?rq]aswamy[ﬂ have proven that their deterministic directed
like in the DR model. the toppings in t’ laver ar P read sandpile model has the same exponents on square, triangular,
€ € odel, the toppings in the layer are sprea and partially directed square lattidén the latter sand is

et 2 ) .
over the transverse directions dsx, ~x. In the DR yanqterred to two nearest neighbors in the same layer and
model the toppled sites form a dense interval with no holesyna in the next layer It is easy to see that our analytical
a{‘,‘zj’ therefore, their number is known to scale exactly a$qments made for the stochastic directed sandpile model
Xj|“. The situation is somewhat less obvious in the stochastigefined on the square lattice also apply, with only small

directed model, where the set of toppled sites can have holeg,qgifications, to that defined on the triangular lattice, where
However, one can argue that these holes would mostly bg, 5 stable SOC configuration the local height can equally
concentrated near the boundaries of the avalanche in anyely pe 0, 1, or 2. Our numerical simulations suggest that

given layer, while the core of an avalanche will be relativelythe model defined on the partially directed square lattice also
hole free. Indeed, as will be confirmed later, the 2D stochas-

tic directed model is characterized by multiple topplings,
where a site at a layex; would typically toppleny(X))
~xj/* times within one avalanche. Since any of theg
grains can go to each of the two nearest neighbors indepen-
dent of others, for large,,, the situation where one of the
neighbors would receive less than two grains and remain
stable is exponentially unlikely. In other words, the creation
of a new hole(a region free of topplingsis exponentially
suppressed down the slope from the sites, which themselves
toppled many times. Therefore, for sufficiently langethe
number of active sites which is proportional to the number of I - |
toppled sites, should scale &~x[/?. From a,=1/2 and | o 000 i
Ed. (2) one obtainsy=3/4 and7;=D=7/4. The exponent 1 o 100 1000
for avalanche size distribution is ther=1+(7;—1)/D X
=10/7. These results are in good agreement with both pre-

vious numerical simulations of various versions of the sto- FIG. 2. (a) The effective exponenB, a, «,, andr as a function
chastic directed sandpile model in two dimensi¢gsand  of x, for the 3D model.(b) The expected number of topplings at
our own simulations of the model. In Fig. 1 we present theeach siten,,, as a function ofx. Note the logarithmical depen-
results of our simulations for the effective exponentsdence orx;.

FIG. 1. The scale dependent effective exponenis
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has the same exponents. Therefore it is likely that the abovianche process in high enough dimension. In Fig. 2 we plot
critical properties are indeed lattice independent. the numerical effective exponents in the 3D stochastic di-

Unlike its deterministic counterpart, the stochastic di-rected model. They agree well with the mean field values.
rected sandpile model exhibits a nontrivial scaling even in |n conclusion, we have found an analytic solution of the
one dimension. In one variant of its toppling rules, which isstochastic directed sandpile model in any dimension. The
essentially identical to the model studied by one of us in Refmain difference of this model from its deterministic
[8], once a height at a given site exceeds one, either one @qunterpart—the DR model—lies in the fractal dimension of
two grains are transferred to the nearest neighbor down th@e set ofactivessites, i.e., sites that can add or remove one
slope. It is easy to sedor details see Ref{8]) that this grain from the overall flow of sand between two subsequent
model is equivalent to a 1D random walk so theh |5y 61 Whereas in the 2D DR model in any layer there are
:Cof‘St’ while the typical ”“T,Eer of topph_ng\!;_scales asa only two active sites at the edges of the interval of toppled
function of x;=x as N(x)~x"*. The distribution of ava- = g;oq iy the 2D stochastic directed sandpile model each of
lanche spatial length in this model has an expongnrt3/2, th imatelw? topoled sites in this int h 1/2
while for the avalanche size=4/3. € approximately(y “toppied SIes In this intervai has a

As in the DR model the upper critical dimension for the c.hance'of being active. This leads to an increase in the fractal
stochastic directed sandpile modeldg=3. In this dimen- dimension of an avalanche froby=3/2 to D, =7/4 due to
sion the expected number of topplings at each site in a laydPultiple topplings. The difference between critical properties
x| grows only logarithmically withx;. Therefore,a=a, of stoghastlc_ and deterministic dllrected model; disappears in
apart from the logarithmic corrections. From Eg) in this  high dimensionsl=3 where multiple topplings in a stochas-
case we getr=1, 7;=D; =2, and7=3/2. This is a stan- tic directed sandpile become prohibitively unlikely and all
dard set of mean-field exponents for any branchiaga- €Xponents acquire their mean-field values.
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