
PHYSICAL REVIEW E, VOLUME 63, 026111
Exact solution of a stochastic directed sandpile model
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We introduce and analytically solve a directed sandpile model with stochastic toppling rules. The model
clearly belongs to a different universality class from its counterpart with deterministic toppling rules, previ-
ously solved by Dhar and Ramaswamy. The critical exponents areD uu57/4, t510/7 in two dimensions and
D uu53/2, t54/3 in one dimension. The upper critical dimension of the model is three, at which the exponents
apart from logarithmic corrections reach their mean-field valuesD uu52, t53/2.
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Numerical and analytical studies of sandpile models
self-organized criticality~SOC! @1# continue to be a subjec
of considerable research activity. In particular, much eff
has recently been invested in establishing the set of uni
sality classes in these systems@2#. The consensus seems
be that the universality class of ad-dimensional sandpile
model depends on the following list of questions.

~i! Is it a critical slope or a critical height model? In oth
words, does a site topple when its local slope or height
ceeds a certain threshold value. This concerns the driv
mechanism of the model. Critical height models@e.g., Bak-
Tang-Wiesenfeld~BTW! model @1## were studied more ex
tensively in the past and are in general better understoo

~ii ! Is sand redistributed isotropically in a toppling even
Accordingly, models can be classified as isotropic or direc
~anisotropic!. The common knowledge is that this is a re
evant parameter, i.e., an arbitrary small anisotropy in t
pling rules usually drives the model to the directed univ
sality class.

~iii ! Finally, is sand redistributed deterministically or ra
domly in each individual toppling@3#. In a model with de-
terministic toppling rules the configuration of the sandp
remains unchanged if every single site on the lattice topp
exactly once. This additional symmetry is usually importa
for the universality class of the model. For example, the
terministic one-dimensional isotropic critical height mod
~1D BTW! has only trivially distributed avalanches of fract
dimension 2. While the variants with randomness in toppl
rules, such as the Zaitsev model@4#, Oslo model@5#, linear
interface model@6#, etc., seem to belong to a universali
class where avalanches have a noninteger fractal dimen
D.2.23 and a probability distribution with a power law e
ponentt.1.27.

Despite many careful numerical and analytical studies
the original BTW sandpile model~which is a deterministic
isotropic critical-height model in the above classification!, its
critical exponents in two dimensions still remain controv
sial @2#. The situation is somewhat better for directed mode
Soon after the original BTW sandpile model@1#, Dhar and
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Ramaswamy introduced and exactly solved in all dimensi
its directed counterpart—the Dhar-Ramaswamy~DR! model
@7#.

Both BTW and DR models have deterministic topplin
rules. As far as stochastic models are concerned there is
ciously little analytical results. Apart from an exact solutio
of a model, equivalent to the 1D stochastic directed sand
@8#, stochastic sandpiles were studied only numerically.
this paper we present an analytical study of a stochastic
rected sandpile model in all dimensions. Stochastic direc
sandpiles were brought to the attention of the community
two recent papers@9#, reporting numerical studies of sever
variants of such models in two dimensions. During t
preparation of this paper, there appeared a closely rel
preprint by Paczuski and Bassler@10# in which an analytical
study of the directed stochastic sandpile model was p
sented and similar results were obtained. In particular, us
different analytical arguments they have arrived at the sa
set of exponents.

The microscopic rules of the stochastic directed sand
model that we selected to study are closely related to thos
the DR model@7#. These rules are modified in the spirit of
stochastic isotropic sandpile model known as the Man
model@11#. It is easier to define our rules in two dimension
while generalization to higher dimensions is straightforwa
A stable configuration of our model is specified by the in
ger height of the sandpilez(x1 ,x2)<1 at each point of a 2D
square lattice. The lattice has open boundary conditi
along the diagonal coordinate,xuu5x11x2, and periodic
boundary conditions in the transversal directionx'5x12x2.
The sand is added randomly at the line withxuu50 and falls
off the edge atxuu5L uu . The difference between our mode
and the DR model lies in toppling rules. In both cases, o
the height at any given site exceeds one, this site beco
unstable and loses two grains of sand to its nearest neigh
in the direction of increasingxuu . However, while in the DR
model each of these two neighbors gets exactly one grai
sand, in our stochastic variant the decision where to m
any particular grain is done independently for each grain
©2001 The American Physical Society11-1
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other words, with probability 1/4 both grains end up on t
left neighbor, with probability 1/4 they go to the right neig
bor, and only with probability 1/2 will each neighbor get on
grain as in the DR model. Obviously, on average each ne
bor gets one grain, yet the additional stochastic elemen
the rules drives the model away from the universality cl
of the DR model@9#. It is easy to see that unlike the dete
ministic rules of the DR model, the new stochastic ru
allow for multiple topplings of some sites within one av
lanche. Indeed, let us consider an example where in the
toppling one grain of sand was transferred to each of
sites in the next layer. Let us further assume that these
both toppled and by chance distributed all four of the res
ing grains of sand to the same site in the next layer. This
has received four grains of sand and therefore would top
twice. The numerical simulations@9# confirm the existence
of multiple topplings in other variants of a stochastic direc
sandpile model.

In order to get an analytical handle on the properties
our model we employ the same trick that was used by on
us to solve a 1D directed stochastic sandpile model@8#. Due
to the Abelian@12# nature of the model, we can change t
order in which topplings are performed without changing
outcome. It is convenient to do topplings layer by layer. T
means that we topple any given site as many times as
essary to make it stable before moving on to the next
stable site, and we topple all unstable sites in one laye~a
given xuu) before toppling any site in the next layer. Let u
concentrate on a site with coordinatesxuu andx' immediately
after we have finished with topplings in the (xuu21)th layer.
Assume that two of its neighbors with coordinatesxuu21 and
x'61 have toppled, respectively,n15n(xuu21,x'21) and
n25n(xuu21,x'11) times. The average number of grains
sand that our selected site would receive from the previ
layer is (n11n2). In the DR model there are no fluctuation
around this average. Also, due to the absence of mult
topplings in this deterministic directed model,n1 andn2 can
be only 0 or 1. Therefore, in the DR model a site can rece
either n11n252 grains, in which case it is guaranteed
topple exactly once, orn11n251, in which case it can
topple with probability 1/2~i.e., it topples if it hadz51
before the transfer and remains stable if it hadz50). From
this one can show@7# that in the DR model the set of site
which topple at each layer form an interval with no hol
inside. The size of this interval as a function of the lay
numberxuu performs an ordinary random walk.

In the stochastic model the relation between the num
of topplings in two subsequent layers is more complicat
Let us focus on the behavior of the total number of topplin
N(xuu)5(x'

n(xuu ,x') in a given layerxuu . The number of

grains of sand transferred from the layerxuu to the next layer
is simply 2N(xuu). It is easy to see that a site which h
received an even number 2k of grains of sand from a previ
ous layer will always topple exactlyk times and, therefore
will transfer the same 2k grains of sand to the layer directl
below it. That means that as far asN(xuu) is concerned, such
sites behave in a completely passive manner, i.e. they do
lead to a decrease or an increase of the total number of
02611
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plingsN(xuu) from layer to layer. On the other hand, any s
which received an odd number 2k11 of grains of sand from
a previous layer has equal chance to topplek times~if it had
z50 before the transfer! or k11 times~if it had z51). In
the former case this site would decrease the grain fl
2N(xuu) by one, while in the latter, increase by 1. Let us c
any site which has received an odd number of grains fr
the previous layer anactive site. The equation, which is the
central result of this work, relating the change in the to
number of topplings from layer to layer to the number
active sitesNa(xuu) in a given layer isN(xuu)5N(xuu21)
1 1

2 (a51
Na(xuu)ja , where allja are21 or 11 with equal prob-

ability and independent of each other. These random n
bers correspond to whether each of theNa(xuu) active sites
had the heightz50 or z51 before the avalanche started.
is straightforward to demonstrate that, as in the DR mode
the steady state of the directed stochastic model all poss
stable configurations ofz are equally represented, and, ther
fore, there are no correlations between the heights at dif
ent sites and each height is equally likely to havez50 or z
51. It is more convenient to rewrite the above equation i
continuous notation:

dN~xuu!

dxuu
5

1

2
ANa~xuu!h~xuu!, ~1!

whereh(t) is a standard Gaussian variable with zero me
and unit variance. This equation describes an unbiased
dom walkN(xuu) with a variable step size12 ANa(xuu). A ran-
dom walk~an avalanche! starts withN(0)51 and ends atxuu
whenN(xuu)<0 for the first time. Let us assume thatN(xuu)
andNa(xuu) in a surviving avalanche scale withxuu with the
exponentsa and aa , respectively. It follows thatNa
;Naa /a. We use this relation to eliminate the variableNa
from Eq.~1!. The resulting differential equation can be eas
solved to give the exponent relations

a5
11aa

2
, t uu511a, ~2!

wheret uu is the exponent of the avalanche length distrib
tion, p(xuu);xuu

2t uu. Since by definition the avalanche siz

~i.e. the total number of topplings! s5( i 51
xuu N( i );xuu

11a

;xuu
D uu, we recover the well-known exponent relationt uu

5D uu for general directed sandpile models.
Note that Eq.~1! applies to the DR model as well as th

stochastic directed sandpile models. The difference betw
these two models lies only in the scaling of the number
active sites withxuu . As was explained above, in the 2D D
model the only two active sites lie at the edge of the inter
of toppled sites. Indeed, only these sites get 1 grain of sa
while the rest get either 0 or 2. Therefore, in the 2D D
modelNa(xuu)52 is just a constant,aa50, and the Eq.~1!
describes an ordinary random walk in whichN(xuu);xuu

a

5xuu
1/2. The introduction of a stochastic element in partic

redistribution dramatically changes the number of act
sites at any given layer of the avalanche. Indeed, when gr
are redistributed independently, any site which has at le
1-2
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EXACT SOLUTION OF A STOCHASTIC DIRECTED . . . PHYSICAL REVIEW E63 026111
one toppled neighborin the previous layer is equally likely
to receive an even or odd number of grains, and therefor
has a probability 1/2 of becoming active. Thus, in the s
chastic model the exponentaa defines how the number o
distinct sitesthat topple at least once, scales with the lay
number xuu . The difference between exponentsa and aa
comes solely from the existence of multiple topplings. The
two exponents have to obey the inequalitya>aa , and their
difference a2aa determines how the average number
topplingsntop(xuu) at a given site in thexuuth layer scales with
xuu : ntop;N/(2Na);xuu

a2aa.
We proceed with an argument that in the 2D direc

stochastic modelaa51/2, and, therefore, from Eq.~2! a
53/4. It is straightforward to determine theaveragenumber
of topplings ^n(xuu ,x')& at a given sitexuu ,x' , where the
average is performed over the whole ensemble of avalan
so that avalanches that die out before reaching this site
tribute 0 to the average. As was noted in Ref.@7#, due to the
conservation of sand and the stationarity of the sandpile
file, ^n(xuu ,x')& has to satisfy the diffusion equation with
source:

]^n~xuu ,x'!&
]xuu

5
1

2

]2^n~xuu ,x'!&

]x'
2

1d~xuu!d~x'!. ~3!

Indeed,on averagethe configuration of the sandpile after a
avalanche has to be that before the avalanche minus the
grain which was added from the source. The above equa
is also exact for our stochastic model, where it implies th
like in the DR model, the toppings in thexuu layer are spread
over the transverse directions asDx';xuu

1/2. In the DR
model the toppled sites form a dense interval with no ho
and, therefore, their number is known to scale exactly
xuu

1/2. The situation is somewhat less obvious in the stocha
directed model, where the set of toppled sites can have h
However, one can argue that these holes would mostly
concentrated near the boundaries of the avalanche in
given layer, while the core of an avalanche will be relative
hole free. Indeed, as will be confirmed later, the 2D stoch
tic directed model is characterized by multiple toppling
where a site at a layerxuu would typically topplentop(xuu)
;xuu

1/4 times within one avalanche. Since any of the 2ntop

grains can go to each of the two nearest neighbors inde
dent of others, for largentop the situation where one of th
neighbors would receive less than two grains and rem
stable is exponentially unlikely. In other words, the creat
of a new hole~a region free of topplings! is exponentially
suppressed down the slope from the sites, which themse
toppled many times. Therefore, for sufficiently largexuu the
number of active sites which is proportional to the number
toppled sites, should scale asNa;xuu

1/2. From aa51/2 and
Eq. ~2! one obtainsa53/4 andt uu5D uu57/4. The exponent
for avalanche size distribution is thent511(t uu21)/D uu
510/7. These results are in good agreement with both
vious numerical simulations of various versions of the s
chastic directed sandpile model in two dimensions@9# and
our own simulations of the model. In Fig. 1 we present
results of our simulations for the effective exponen
02611
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a5d logN/d logxuu and aa5d logNa /d logxuu as a function
of xuu . The numerical exponenta agrees well with the ana
lytical results. The exponentaa is less clean due to the pres
ence of holes near the boundary of avalanche regions.
exponent first overshoots to a value of almost 0.6 but th
clearly goes down so that in the end of the range of
simulations,xuu;100 000, it is consistent with our theoretic
resultaa51/2.

To address the question of universality Dhar and R
maswamy@7# have proven that their deterministic directe
sandpile model has the same exponents on square, triang
and partially directed square lattice~in the latter sand is
transferred to two nearest neighbors in the same layer
one in the next layer!. It is easy to see that our analytica
arguments made for the stochastic directed sandpile m
defined on the square lattice also apply, with only sm
modifications, to that defined on the triangular lattice, wh
in a stable SOC configuration the local height can equa
likely be 0, 1, or 2. Our numerical simulations suggest th
the model defined on the partially directed square lattice a

FIG. 2. ~a! The effective exponentsD,a,aa , andt as a function
of xuu for the 3D model.~b! The expected number of topplings a
each sitentop as a function ofxuu . Note the logarithmical depen
dence onxuu .

FIG. 1. The scale dependent effective exponentsa
5d log N/d log xuu andaa5d log Na /d log xuu as a function ofxuu for
the 2D model, and for two longitudinal system sizesL uu55000 and
L uu5100 000.
1-3
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MORTEN KLOSTER, SERGEI MASLOV, AND CHAO TANG PHYSICAL REVIEW E63 026111
has the same exponents. Therefore it is likely that the ab
critical properties are indeed lattice independent.

Unlike its deterministic counterpart, the stochastic
rected sandpile model exhibits a nontrivial scaling even
one dimension. In one variant of its toppling rules, which
essentially identical to the model studied by one of us in R
@8#, once a height at a given site exceeds one, either on
two grains are transferred to the nearest neighbor down
slope. It is easy to see~for details see Ref.@8#! that this
model is equivalent to a 1D random walk so thatNa
5const, while the typical number of topplingsN scales as a
function of xuu5x as N(x);x1/2. The distribution of ava-
lanche spatial length in this model has an exponentt uu53/2,
while for the avalanche sizet54/3.

As in the DR model the upper critical dimension for th
stochastic directed sandpile model isdu53. In this dimen-
sion the expected number of topplings at each site in a la
xuu grows only logarithmically withxuu . Therefore,a5aa
apart from the logarithmic corrections. From Eq.~2! in this
case we geta51, t uu5D uu52, andt53/2. This is a stan-
dard set of mean-field exponents for any branching~ava-
ce

en
c
ith
f

02611
ve

-
n

f.
or
he

er

lanche! process in high enough dimension. In Fig. 2 we p
the numerical effective exponents in the 3D stochastic
rected model. They agree well with the mean field value

In conclusion, we have found an analytic solution of t
stochastic directed sandpile model in any dimension. T
main difference of this model from its determinist
counterpart—the DR model—lies in the fractal dimension
the set ofactivesites, i.e., sites that can add or remove o
grain from the overall flow of sand between two subsequ
layers. Whereas in the 2D DR model in any layer there
only two active sites at the edges of the interval of topp
sites, in the 2D stochastic directed sandpile model each
the approximatelyxuu

1/2 toppled sites in this interval has a 1/
chance of being active. This leads to an increase in the fra
dimension of an avalanche fromD uu53/2 to D uu57/4 due to
multiple topplings. The difference between critical propert
of stochastic and deterministic directed models disappea
high dimensionsd>3 where multiple topplings in a stochas
tic directed sandpile become prohibitively unlikely and
exponents acquire their mean-field values.
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